
PDF.JS EXPRESS
Buy vs Build
by Nick Johansson

In this article, we outline some key considerations when deploying a PDF.js viewer into your

application. The three top considerations are:

PDF.JS EXPRESS - Buy vs Build

1

Determining if customizing

your PDF.js viewer is required

Understanding the cost of

developing customizations

1 2 3 The costs of

maintaining your viewer

A need for customization

When Mozilla introduced PDF.js in 2011, it was designed to be Firefox’s PDF

Viewer -- allowing users to render PDFs in their web browsers. Out-of-the-box

PDF.js comes with three layers:

Initially PDF.js was not intended for commercial use but contributions from the

open-source community have extended its functionality. Some simple PDF.js

customizations you can quickly deploy include:

Adding additional features to PDF.js

In a recent survey, 57 unique organizations stated the most common feature

they wanted to add to PDF.js were Annotations (57.1%), Signatures (19%) ,

Parsing & extraction (14.3%), Form filling (11.9%)

Additional display modes

Page transitions

Different page layouts

Document outlines and bookmarks

Document printing

A core layer to interpret the binary format of the PDF

A ready-to-use PDF viewer that includes basic features like thumbnails,

search, rotate, print and more.

A display interface to render a PDF page into a canvas element

https://mozilla.github.io/pdf.js/web/viewer.html
https://www.pdftron.com/blog/pdf-js/guide-to-evaluating-pdf-js/#why-organizations-switch-from-pdfjs

2

Of these respondents, 71.4% tried to add some of these PDF.js features

themselves but ultimately found it too difficult or time-intensive. If your

requirements include extending a PDF.js viewer with this type of functionality,

an important first step is to spend time understanding all the costs involved in

adding these features.

The costs of customizing PDF.js

If you are considering adding these features to your PDF.js Viewer, there are

3 key costs to investigate:

Development cost

the time it will take to

learn, code and deploy

features in your viewer

Maintenance cost

the time it will take to

maintain and support

your custom viewer

Opportunity cost

resources spent developing &

maintaining your viewer that

are not spent improving your

core differentiator

Developing with PDF.js Documentation

When customizing PDF.js there is a risk that documentation for the feature you

want to add is non-existent, stale or incomplete. If no documentation exists,

development occurs in uncharted territory, making it difficult to predict amount

of developer resources needed and the turnaround time. A good first step is to

read through closed PDF.js Github issues & open PDF.js Github issues to identify

if the features you are interested in adding have been successfully deployed or if

documentation is incomplete.

Annotations (57.1%)

Signatures (19%)

Parsing & extraction (14.3%)

Form filling (11.9%)

https://github.com/mozilla/pdf.js/issues?q=is%3Aissue+is%3Aclosed
https://github.com/mozilla/pdf.js/issues

3

Complex PDF Specification

Depending on the functionality you hope to add, you might need to spend time

getting acquainted with the PDF specification (over 1000 pages not including

extensions and supplements). For example, if you plan to add annotations to a

viewer, you will need to learn how to handle basic rendering instructions,

including how to convert PDF annotation coordinates to canvas coordinates.

PDF.js does not have APIs

No API exists for adding features to the PDF.js Viewer UI. If you are planning

on adding features like eSignatures or annotations to your viewer’s UI, you will

need to account for the time it takes to familiarize yourself with the PDF.js

code base.

Support during development

Another important consideration is determining how often you rely on support

during development. With an open-source solution, there is some uncertainty

about response time when opening a new issue. Overall, PDF.js has many active

contributors who typically respond within a day or two, particularly for simple

issues. For more complex issues (e.g., adding annotation, signature, form filling,

etc.) responses can take longer. And if your request falls outside the scope of the

project, you are largely on your own.

Unsupported Features Reason

Form filling

Direct annotation (Add, edit, and remove)

Signatures

Toggleable visual layers (via OCGs)

Pinch zoom for mobile

Night mode

Open Issue for 3 years

Out of scope

Open for 7 years

Open 8 years

Open 6 years

Open 7 years

https://www.pdftron.com/blog/pdf-js/guide-to-evaluating-pdf-js/#support
https://github.com/mozilla/pdf.js/issues/7613
https://github.com/mozilla/pdf.js/issues/10804
https://github.com/mozilla/pdf.js/issues/1076
https://github.com/mozilla/pdf.js/issues/269
https://github.com/mozilla/pdf.js/issues/2582
https://github.com/mozilla/pdf.js/issues/2071

4

Opportunity cost is the loss of potential gain from other alternatives

when one alternative is chosen.

PDF.js has over 6,000 forks and commits typically occur several times a week.

Depending on the extent of your customization, these changes might have an

impact on your project. Some of the customers we’ve worked with have

encountered situations where their customizations break after PDF.js is updated.

The best way to deal with this is to assign a developer to periodically monitor

and test your PDF.js viewer customizations.

Cost of maintaining custom PDF.js project

Can someone please fix this issue in pdf js. This issue has ruined our

experience in an application that is in production. If we don't get a fix

we will have to abandon pdf.js and move to a different product. I don't

want to do that as I find pdf.js really simple in its UI and dependencies.

When assessing whether to undertake a custom pdf.js project, the first thing to

look at is the overall cost. Once you’ve defined how much time will need to be

invested by developer resources, this assessment ends up being a straightforward

calculation:

If the cost of using internal resources is lower than a commercial solution, then it

would seem obvious to develop in-house. But there is one more cost to consider -

the cost of using developer resources to work on something that is not your core

differentiator - a cost known as opportunity cost.

“

“

”

”

Opportunity cost of PDF.js

Custom PDF.js cost assessment:

$45 per hour for developer salary

80 to 160 hours of development time

20 to 40 hours for yearly maintenance

$3,600 to $7,200 to setup viewer

$900 to $1,800 maintenance cost per year

5

Next steps

Opportunity cost is most commonly used when deciding how best to allocate

resources to maximize gains. A simple example would be deciding how to

allocate developer resources in your product roadmaps:

Your approach to opportunity cost will likely be driven by your business strategy

& philosophy. Some strategies focus resources on their key differentiators and

outline the types of work they will not do. Other strategies emphasize

developing software internally to avoid reliance on third-party software

providers. Dropbox is an example of the latter strategy - they developed their

own custom PDF.js viewer but eventually abandoned the project for another

open-source solution:

Opportunity cost of long-term maintenance is another important consideration.

If an unexpected bug is discovered or a major update occurs, a developer will

need to be pulled off their current project to fix the issue. These unplanned

delays can have a direct impact on product release schedules. It can also

demotivate and defocus developers who need to jump from their current priority

back to supporting the PDF.js project.

If you require a simple viewer without features like annotations, signatures or

form filling, a PDF.js viewer will be a good fit out-of-the-box. If you plan on

Integrating PDF.js with Dropbox was quite difficult, if not downright

hacky. PDF.js was designed to be Firefox’s integrated PDF viewer,

rather than a component of another product." ~Senior Developer,

Dropbox

“

”

develop feature 1 to

increase new users by 2%

Option #1:

 develop feature 2 to

increase new users by 1%

Option #2:

https://blogs.dropbox.com/tech/2017/12/improving-document-preview-performance/

6

adding custom features to your viewer, however, it's important to understand all

the different costs you will encounter. Having an understanding of these costs

will help you determine if it makes sense to build your viewer internally or

whether to get started with a commercial pdf.js viewer like PDF.js Express.

https://pdfjs.express/documentation/get-started

